

Ausgabe 1

Februar 2021

INHALT

1	Einleitung	3
2	Berechnung von Leistung und Drehmoment	
1.1.		
1.2.		4
2.	Effektiver Mitteldruck	4
2.1.		
2.2.		
2.3.		
3.	Indizierter Mitteldruck	
3.1.	Ladungswechsel	6
3.2.		
3.3.		
3.4.	Verdichtungsverhältnis	9
4.	Reibungsverluste	9
5.	Gebläseverluste	10
6.	Berechnungsbeispiele	10
6.1.	•	
7.	Resümee: wie viele PS hat also mein Puch?	
7.1.		
7.2.	~	

1 <u>Einleitung</u>

In der Puch-Szene wird viel über Leistung gesprochen.

In der Rennszene tauchen Werte von 60, 70, 80 PS und mehr auf.

Mit diesem Beitrag versuche ich die Diskussion mit Fakten zu bereichern.

Niemand kann die Grenzen der Physik überschreiten. So sind natürliche Schranken gesetzt.

Die Leistung hängt nur von 3 Faktoren ab: Hubraum, Drehzahl und mittlerer Verbrennungsdruck.

Beim Saugmotor lässt sich, anders als beim aufgeladenen Motor, der Verbrennungsdruck nur wenig beeinflussen. Also bleiben nur Hubraum und Drehzahl.

Und das Schrauben an vielen kleinen Rädchen, auf die ich hier eingehe.

Zudem habe ich eine Excel-Berechnung aufgestellt, wo man alles nachvollziehen kann.

2 Berechnung von Leistung und Drehmoment

1.1. Die Formel für die Leistung

$$P = p_{me} * V_h * n * T * K_1$$

Leistung	Bezeichnung	Kürzel	Einheit	Name
Motorleistung	LEISTUNG	Р	PS	Pferdestärken
"p _{me(P)} " steht für "Effektiver Mitteldruck bei Drehzahl der Maximalleistung". Das ist der gemittelte Druck im Brennraum während eines Arbeitszyklus.	DRUCK	P _{me(P)}	daN/cm²	bar
Gesamthubraum des Motors	VOLUMEN	V_h	dm ³	Liter
Drehzahl bei Maximalleistung	DREHZAHL	n	U/min	Umdrehungen /Minute
Zweitakt-Motor: T=1, Viertaktmotor: T=0,5	MOTORTYP	Т	-	Motortyp
Umrechnungsfaktor (Konstante)	KONSTANTE	K ₁	-	

Man sieht also, dass die Motorleistung recht einfach berechnet werden kann:

- 1. Je höher der Effektive Mitteldruck, desto höher die Leistung
- 2. Je höher der Hubraum, desto höher die Leistung
- 3. Je höher die Drehzahl, desto höher die Leistung
- 4. Motortyp: Zweitakt: Der Motor arbeitet bei jeder Umdrehung, daher 1 Viertakt: der Motor arbeitet bei jeder zweiten Umdrehung, daher 0,5.
- 5. Der Umrechnungsfaktor berücksichtigt die unterschiedlichen Einheiten:

1 bar = 100.000 N/m² (Pascal)

1 m³ (Kubikmeter) = 1000 Liter

1 U/min = 60 U/s (Umdrehungen pro Sekunde)

1 kW (Kilowatt) = 1000 Watt

1 kW (Kilowatt) = 1,36 PS (Pferdestärke)

Somit ergibt sich K_1 zu: =100000 / 1000 / 60 / 1000 * 1,36 = 0,002267

Rechenbeispiel 500er Puch-Motor:

P = 6,64 [bar] * 0,493 [Liter] * 4600 [U/min] * 0,5 [T] * 0,002267 [Faktor K1] = 17 PS 1 PS frisst dann noch das Gebläse. Also bleiben **16 PS**.

1.2. Die Formel für das Drehmoment

 $M = p_{me(M)} * V_h * T * K_2$

Drehmoment	Bezeichnung	Kürzel	Einheit	Name
Motordrehmoment	MOMENT	М	Nm	Newtonmeter
" p _{me(M)} " steht für "Effektiver Mitteldruck" bei der Drehzahl des maximalen Drehmomentes.	DRUCK	P _{me(M)}	daN/cm²	bar
Gesamthubraum des Motors	VOLUMEN	Vh	dm³	Liter
Zweitakt-Motor: T=1, Viertaktmotor: T=0,5	MOTORTYP	Т	-	Motortyp
Umrechnungsfaktor (Konstante)	KONSTANTE	K ₂	-	

Der Umrechnungsfaktor berücksichtigt die unterschiedlichen Einheiten:

1 bar = 100.000 N/m^2 (Pascal)

1 m³ (Kubikmeter) = 1000 Liter

 $1 U = 6,26 \text{ rad } (2\pi)$

Somit ergibt sich K_2 zu: =100000 / 1000 / 2π = 15,92

Rechenbeispiel 500er Puch-Motor:

M = 8.31 [bar] * 0.493 [Liter] * 0.5 * 15.92 [Faktor K2] = 32.6 Nm.

0,6 Nm frisst dann noch das Gebläse. Also bleiben 32 Nm. (In alter Einheit: 3,2 mkg)

2. <u>Effektiver Mitteldruck</u>

2.1. Überblick

Wir sehen in obigem Beispiel, dass man aus Hubraum, Drehzahl und Mitteldruck ganz einfach die Leistung berechnen kann.

Aber wie kommen wir nun zum Mitteldruck?

Der **Mitteldruck**, auch **mittlerer Verbrennungsdruck** ist eine Rechengröße, welche den gemittelten Druck auf die Kolbenfläche während eines Arbeitstaktes darstellt

Man erhält ihn durch Messung des Zylinderdruckes über alle Takte und anschließende Mittelwertbildung.

Der in Wirklichkeit stark schwankende Zylinderdruck wird also als eine konstante Größe dargestellt, mit der man einfach rechnen kann.

Vereinfacht dargestellt kann man das Gaspedal im Fahrzeug als Mitteldruckregler betrachten.

Er beträgt bei modernen Otto-Motoren ca. 10 bis 13 bar (Siehe Bild nächste Seite)

Bei dem niedrig verdichteten 500er Puch-Motor, der eher als Drosselmotor ausgelegt ist, erreichen wir gerade mal 8,3 bar

2.2. Typische Werte für den Effektiven Mitteldruck

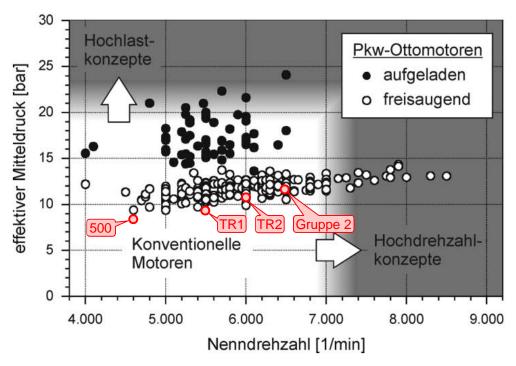


Bild: Maximaler Mitteldruck und Nenndrehzahl aktueller Serien-Pkw-Ottomotoren

Einige Puch-Werte habe ich rot eingezeichnet.

Der effektive Mitteldruck dient zur Berechnung der Leistung des kompletten Motors an der Kupplung.

2.3. Die wichtigsten Einflussfaktoren auf den Effektiven Mitteldruck

- Indizierter Mitteldruck p_{mi}, entspricht dem Mittelwert des gemessenen Zylinderinnendruckes über einen kompletten Arbeitshub (4 Takte). Bezieht sich also nur auf den Gasdruck im Zylinder Der indizierte Mitteldruck betrachtet NUR den Druck im Zylinder
 - a. Ladungswechsel
 - b. Verbrennungsqualität im Zylinder
 - c. Der Liefergrad: gibt an, wie viel Gemisch beim Ladungswechsel in den Brennraum gelangt
 - d. Verdichtungsverhältnis
- 2. Reibungsverluste im Motor wie Kolben- und Lagerreibung, Ölpumpe usw.

Bei luftgekühlten Motoren kommen zur Leistungsermittlung noch die **Gebläseverluste** hinzu, die auch abgezogen werden

Im Folgenden wollen wir uns ansehen, wie wir diese Punkte beeinflussen können

3. <u>Indizierter Mitteldruck</u>

3.1. Ladungswechsel

In folgendem Diagramm ist der Ladungswechsel eines 4-Takt-Motors dargestellt

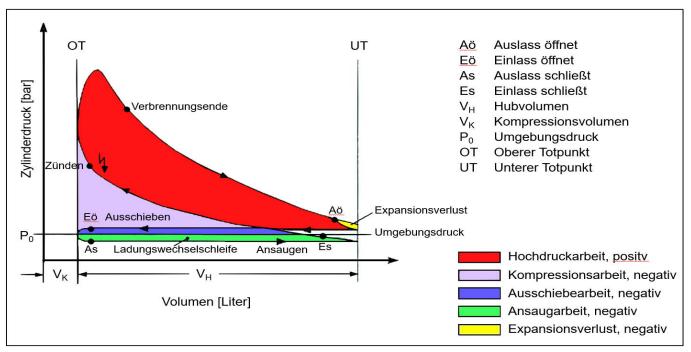


Bild: Ladungswechsel beim 4-Takt-Ottomotor

- Beginnen wir links beim Ansaugen (grüner Balken). Dass Frischluft überhaupt in den Zylinder strömen kann, ist Unterdruck notwendig. Die dazu nötige Arbeit muss der Motor erst mal hineinstecken
- Kompression (violett): Dann kommt der Verdichtungstakt. Wieder muss sich der Motor plagen
- Die Verbrennung (rot) liefert jetzt endlich verwertbare Kraft. Die rote und violette Fläche zusammen stellt die abgegebene Energie dar.
- Expansionsverlust (gelb): Das Auslassventil macht schon ein Stück vor den unteren Totpunkt auf. Der Restdruck entweicht und wird nicht mehr verwertet
- Ausschieben (blau): Das verbrannte Gas muss jetzt mit etwas Überdruck aus dem Zylinder hinaus in den Auspuff befördert werden. Dann beginnt's wieder von vorne.

Nimmt man die rote Fläche, zieht davon die blaue und die grüne ab, teilt alles gleichmäßig auf die 4 Kolbenhübe auf, dann erhält man den indizieren Mitteldruck.

Der maximale Verbrennungsdruck beträgt ca. das 10-fache des Mitteldruckes

3.2. Verbrennungsqualität im Zylinder

Die Einflussfaktoren auf die Verbrennungsqualität

Thema	Maßnahme
Außenluftdruck	Je höher desto besser. Können wir nicht beeinflussen. Ideal auf Meereshöhe und im Hochdruckgebiet. Schlecht in den Bergen im Tiefdruckgebiet
Lufttemperatur	Je kälter desto besser. Gut für den Mitteldruck ist: Keine Ansaugluft-Vorwärmung: Offene Schlitze im Motordeckel Keine Saugrohr-Vorwärmung über heiße Auspuffgase
Luftfeuchtigkeit	Trockene Luft trägt etwas mehr Sauerstoff als feuchte, der Einfluss ist aber minimal. Feuchte, kalte Luft führt zu Vergaservereisung, das macht manchmal ärger. Deshalb haben Serienmotoren die Saugrohr-Vorwärmung.
Benzinqualität	Grundsätzlich haben alle Benzinsorten den gleichen Heizwert, haben also theoretisch keinen Einfluss auf die Leistung. Sie unterscheiden sich nur in der Oktanzahl, was für die Klopffestigkeit wichtig ist. Trotzdem sollte man E10 vermeiden. Bei alten Motoren sind im Kraftstoffstrang manchmal Komponenten verbaut, die das nicht mögen. Außerdem könnte die Viskosität geringfügig anders sein, was die Vergasereinstellung verändert. 98 Oktan sind Pflicht beim TR2, ist der Motor noch höher verdichtet (>10,5) sollte man nur mehr 100 Oktan tanken
Benzin-Luft-Gemisch	Wird charakterisiert durch das "Luftverhältnis" Lambda. [λ] Maximale Leistung wird erreicht bei λ= 0,8 bis 0,9. → "fettes" Gemisch. D.h. dass 100% des Sauerstoffs und 80 - 90% des Benzins verbrannt werden. Alle TR-Vergaser sind serienmäßig so abgestimmt
Zündzeitpunkt	Der optimale Zündzeitpunkt ist abhängig von Drehzahl und Verdichtungsverhältnis. Um den Zündzeitpunkt zu optimieren, empfiehlt sich bei schnellen Motoren der Umbau auf Löser-Verteiler. Zu finden in meinem Buch: "Das Steyr-Puch-Zündsystem" 50 PS 6500 U/min 6000 U/min 7000 U/min 5000 U/min 7000 U/min 7000 U/min 7000 U/min 7000 U/min
Verbrennungsablauf / Doppelzündung	Hat der Zündfunke das Gemisch gezündet, startet eine Flammfont und arbeitet sich durch den Brennraum. Mit Doppelzündung starten 2 Flammfronten, die sich in der Mitte des Brennraues begegnen. Der Druckanstieg im Brennraum wird steiler, das führt zu einer (geringen) Leistungssteigerung

3.3. Liefergrad

Der Liefergrad λ_L beschreibt bei einem Verbrennungsmotor das Verhältnis der nach Abschluss eines Ladungswechsels tatsächlich im Zylinder enthaltenen Frischladung zur theoretisch maximal möglichen Füllung (= Zylinderhubraum)

Liefergrad 1 bedeutet, dass der Motor es geschafft hat, das Hubvolumen bei Ansaug-Ende vollständig mit Frischem Gemisch zu füllen.

Standard-Saugmotoren schaffen im Bereich des Maximalen Drehmomentes ca. 0,9, im Bereich der maximalen Leistung ca. 0,7- 0,8

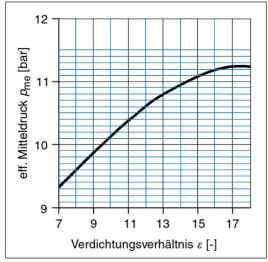
Die Einflussfaktoren auf den Liefergrad

Thema	Maßnahme
Freie Strömung im Ansaugtrakt	 Ansauglufttrichter Vergaser mit großem Durchlass Dickes Ansaugrohr Nirgendwo Strömungsbehindernde Kanten
Zylinderkopf	Erweiterte Ansaug- und AuslasskanäleGrößere VentileFeinbearbeitete Kanäle und Ventile
Auspuff	- Möglichst freie Strömung
Nockenwelle	Eine Nockenwelle mit höherem Ventilhub und längeren Steuerzeiten erleichtert das "Atmen" des Motors und wirkt sich positiv auf den Liefergrad aus, speziell bei höheren Drehzahlen.
Positives Spülgefälle Ansaugtrakt	Das bedeutet: Nutzung von Gasschwingungen im Saugrohr. Am Ende des Ansaugtaktes, am unteren Totopunkt, kurz bevor das Einlassventil schließt, schiebt eine Druckwelle noch zusätzliches frisches Gas in den Zylinderraum. Das ergibt einen "Auflade-Effekt", der den Liefergrad auf 1,1 hochpuschen kann
Positives Spülgefälle Auspufftrakt	Während der Ventilüberschneidung im Bereich des oberen Totpunktes sind Ein- und Auslassventil gleichzeitig geöffnet. Durch abgestimmte Rohrlängen der Auspuffanlage kann erreicht werden, dass zu diesem Zeitpunkt Unterdruck am Auslassventil herrscht. Dieser saugt das restliche Abgas aus dem Zylinder und saugt gleichzeitig Frischgas durch das Einlassventil nach. Im Idealfall erhält man eine Vollständige Füllung des Zylinderraumes samt Brennraum mit Frischgas, also Liefergrad auf 1,05 - 1,1.
Aufladung	Mit Kompressoren oder Turboladern sind dem Liefergrad theoretisch keine Grenzen gesetzt. Praktisch stößt man aber sehr schnell an die Klingelgrenze und an die mechanische und thermische Grenze des Puch - Motors.

Positives Spülgefälle

Dieser Effekt funktioniert nur mit einer Nockenwelle mit großer Ventilüberschneidung und langen Steuerzeiten.

Details zu den Effekten kannst Du in meinem Buch: **Steyr-Puch Vergaserhandbuch**, Kapitel "Abgestimmtes Saugrohr" und in der Gratisbroschüre: **Die Monte-Carlo-Auspuffanlage für den Steyr-Puch 650 TR** nachlesen.



3.4. Verdichtungsverhältnis

Im Bild erkennt man:

- 1. Mit steigendem Verdichtungsverhältnis steigt auch der Mitteldruck kontinuierlich an.
- 2. Je höher die Verdichtung, desto flacher wird der Anstieg Das hat 2 Gründe:
 - Ab 11,5 bis 12 muss der Zündzeitpunkt wegen Klopfgefahr zurücknehmen werden, was Leistungsverlust bedeutet
 - Je höher die Verdichtung, desto größer ist der Druck auf den Kolben und damit steigt dessen Reibung an der Zylinderwand.

Für die Berechnung in der Excel-Tabelle habe ich den Einfluss des Verdichtungsverhältnis auf den Mitteldruck als Exponentialfunktion angenähert.

Bild: Einfluss des Verdichtungsverhältnis auf den effektiven Mitteldruck

4. Reibungsverluste

- Reibung des Kolbens und der Kolbenringe an der Zylinderwand
- Pleuel- und Kurbelwellenlagerreibung
- Alle anderen Lager im Motor, z. B. Nockenwelle, Ventiltrieb, ...
- Ölpumpe
- Benzinpumpe
- Planschverluste Motoröl
- Keilriemen
- Lichtmaschine
- Dichtungsreibung

Diese Verluste sind kaum zu verringern. Hier die wenigen Möglichkeiten:

Bewegte Massen	Überschüssiges Material an Pleuel und Komponenten des Ventiltriebes entfernen, aber nur so dass die Festigkeit und Steifigkeit nicht reduziert wird						
Oberflächen	Pleuel und Komponenten des Ventiltriebes polieren						
Motoröl	Verwendung von synthetischem Leichtlauf-Motoröl						

Als Richtwert gilt:

Verlust = 10% der Motorleistung im Bereich des maximalen Drehmomentes

Verlust = 12-15 % Motorleistung im Bereich der Maximalleistung

5. <u>Gebläseverluste</u>

Der Motor sollte ausreichend gekühlt werden

Dazu hat der Puch-Motor 2 Einrichtungen

- 1. Kühlung durch Gebläseluft
- 2. Kühlung des Motoröles

Die Auswahl des Gebläses hat gehörigen Einfluss auf die Motorleistung Man sollte sich also gut überlegen, welches Gebläse-Laufrad man verwendet Die Verluste steigen mit der dritten Potenz der Drehzahl

Optimieren der Kühlung

Thema	Maßnahme
Abdichtung der Ge- bläse-Luftführung	Alle Motorbleche so gestalten, dass keine Gebläseluft irgendwo entweichen kann, wo sie nicht zur Zylinder- und Kopfkühlung dient. D. h. Anliegend am Motorgehäuse, saubere Abdichtung der Heizungsluftanschlüsse und des Gebläse-Leitrades. Die Gebläsehaube am besten mit einem Moosgummi-Streifen abdichten.
Übersetzungsverhältnis des Riementriebes	Der TR2-Motor hat serienmäßig eine kleinere Riemenscheibe an der Kurbelwelle, wodurch die Gebläsedrehzahl reduziert wird. Das hat 2 Gründe: 1. Geringere Gebläseverluste 2. Zulässige Maximaldrehzahl von Dynastarter und Gebläse-Laufrad. Motore, die über 6500 U/min drehen sollten immer mit der kleineren Riemenscheibe ausgestattet sein
Abführen der Ölkühler- luft	Der Original-Ölkühler liegt im Kühlluftstrom des linken Zylinders. Dieser erhält so vorgewärmte Luft, was schädlich ist. Lösung: Gebläsehaube mit Ölkühler-Luftabführung
Externer Ölkühler	Alternativ: Anordnung des Ölkühlers an der Vorderachse, so bekommen beide Zylinder optimale Gebläse-Kühlluft
Ölkühlung der Zylinder- köpfe	Der TR2-Motor hat serienmäßig eine Entlüftung der Zylinderköpfe durch Schläuche von den Zylinderkopfdeckeln zum Öleifüllstutzen. Die heftigen Druckschwankungen im 2-Zylinder-Boxermotor bewirken, dass so mehr Öl über die Stößelstangenrohre in die Zylinderköpfe gefördert wird und so ein wenig zur Kühlung beiträgt.
Auswahl des Lüfters	Werden die obigen Maßnahmen umgesetzt, so reicht bei hochdrehenden 650er Motoren das Gebläserad Klein oder Mittel. Bei Motoren mit mehr Hubraum und im Dauervollgas-Betrieb ist das Gebläserad "Groß" zu empfehlen. Das Gebläserad "Tropen" hat in einem gut abgestimmten Puch-Motor nichts verloren.

Gebläse		Klein	Mittel	Groß	Tropen
					3
Gebläseleistung im Auslegungspunkt	PS	0,60 (1)	1,00 (2)	1,80 (2)	2,30 (1)
bei Nenndrehzahl		4600	4600	4800	4800

^{(1)...}geschätzt

6. Berechnungsbeispiele

Auf der nächsten Seite kannst Du nachvollziehen, wie sich die einzelnen Parameter auf die Leistung auswirken. Weiss: Eingabezellen. Grau: fix vorgegebene Werte. Blau: berechnete Ergebnisse

^{(2)...}Angabe It. Buch "Steyr Puch 650 TR Rallye":

Leistungsberechnung Steyr-Puch-Motor

arben: Fix

Eingabewerte x Vorgegebene Werte Berechnete Werte

		Farben:	Fix Vorgegei													
		9	Berechne	te vverte	J											
			Serienautos							Werks- tuning	VW-Kolben Ø 8/		Kolben Ø 90			
Fahrzeug	Formel	Einheit	500 500D	500DL 500S	650T 700E	700C	650 TR	650 TR1 Europa	650 TR2 Europa	650 TR2 Europa	650 TR2 Gruppe2	TR1 Kolben D86	TR2 Kolben D86	TR1 Kolben D90	TR2 Kolben D90	Rennmoto Müller
Leistung (Original Steyr-Puch)	P	PS	16,0	19,8	19,8	25,0	27,0	30,0	34,0	40,0	49,0	?	?	?	?	60
Drehzahl bei max. Leistung	n _p	U/min	4600	4600	4800	4800	5000	5500	5800	6000	6500	5500	5800	5500	5800	6500
Drehmoment	M	Nm	32,0	34,0	41,0	42,0	42,0	46,0	50,0	55,0	61,0	?	?	?	?	?
Drehzahl bei max. Drehmoment	n _M	U/min	2800	2800	2800	3000	3500	3500	3700	4700	5000	3500	4700	3500	4700	5000
Kolbendurchmesser	d	mm	70,0	70,0	80,0	80,0	81,0	81,0	81,0	81,0	81,0	87,0	87,0	90,0	90,0	90,5
Kolbenhub	h	mm	64,0	64,0	64,0	64,0	64,0	64,0	64,0	64,0	64,0	64,0	64,0	64,0	64,0	64,0
Zylinderanzahl	x	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2
i = 1 bei 2-Takt-Motor, i = 0,5 bei 4-takt-Motor	İ	-	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
Hubraum (Hubvolumen)	$V_h = d^{2*}\pi^*h/4.000.000$	I (Liter)	0,493	0,493	0,643	0,643	0,660	0,660	0,660	0,660	0,660	0,761	0,761	0,814	0,814	0,823
Verdichtung	ε	-	6,8	6,8	7,2	7,2	8,8	8,8	10,5	10,5	12,0	8,5	8,5	10,5	10,5	10,5
Auspuff		-	Serie	Serie	Serie	Serie	Serie	Serie	Serie	Monte	Monte	Zündfolge	Monte	Zündfolge	Monte	Aspern
Nockenwelle		-	"1" od. P94	"1"	"2" od. P94	"2" od. P94	P82	P94	P92	P92	P92 5°vers.	P94	P92	P94	P92	RS
Durchmesser Lufttrichter im Vergaser (nur zur Info)		mm	22	25	20	27	2 x 22	2 x 22	2 x 27	2 x 27	2 x 27	2 x 22	2 x 27	2 x 22	2 x 27	Einzelverg
Mittlerer Verbrennungsdruck																
Indizierter Mitteldruck bei Verdichtung 10	P _{mi}	bar	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0
Korrekturfaktor für Verdichtung (verd. 10 entspricht 1)	K _V =ε ^{0,25} *0,5625	-	0,91	0,91	0,92	0,92	0,97	0,97	1,01	1,01	1,05	0,96	0,96	1,01	1,01	1,01
Liefergrad für max. Leistung	λ _p	-	0,69	0,85	0,64	0,79	0,76	0,78	0,80	0,90	0,96	0,76	0,88	0,74	0,86	0,96
Liefergrad für max. Drehmoment	λ_{M}	-	0,85	0,90	0,82	0,85	0,79	0,86	0,90	0,97	1,06	0,86	0,97	0,86	0,97	1,06
Reibungsverluste bei max. Leistung	R _P	%	12%	12%	12%	12%	12%	12%	12%	12%	12%	12%	12%	12%	12%	12%
Reibungsverluste bei max. Drehmoment	R _M	%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
Effektiver Mitteldruck für Max. Leistung	$p_{me(P)} = p_{mi} * K_V * \lambda_P * (1-R_P)$	bar	6,64	8,11	6,18	7,66	7,78	7,96	8,52	9,66	10,64	7,71	8,93	7,91	9,20	10,26
Effektiver Mitteldruck für Max. Drehmoment	$p_{me(M)} = p_{mi} * K_V * \lambda_M * (1-R_M)$	bar	8,31	8,83	8,18	8,41	8,27	9,03	9,80	10,65	11,95	8,92	10,06	9,40	10,61	11,59
Leistung ohne Gebläse	P _U =p _{me(P)} *V _h *n _P *i*0,00227	PS	17,0	20,8	21,6	26,8	29,1	32,7	36,9	43,3	51,7	36,6	44,6	40,2	49,2	62,3
Drehmoment ohne Gebläse	M ₀ =p _{me(M)} *V _h *i*15,92	Nm	32,6	34,6	41,9	43,1	43,4	47.4	51,4	55,9	62,7	54,0	60,9	60,9	68,7	76,0
Verluste durch das Gebläse-Laufrad	V 1 110(11) 11							L		l	1			1		
Klein Mittel Groß Tropen	Dropdownliste	-	Mittel	Mittel	Groß	Groß	Groß	Groß	Groß	Klein	Mittel	Groß	Mittel	Groß	Mittel	Mittel
Riemenscheibe Standard: D=177, Klein: D=167 (TR2)	1	-	Standard	Standard	Standard	Standard	Standard	Standard	Klein	Klein	Klein	Standard	Klein	Standard	Klein	Klein
Verlust durch Gebläse bei Drehzahl der max. Leistung	P _{GL}	PS	1,00	1,00	1,80	1,80	2,03	2,71	3,00	1,26	2,66	2,71	1,89	2,71	1,89	2,66
Verlust durch Gebläse bei Drehzahl des max. Drehmoment	P _{GM}	PS	0,23	0,23	0,36	0,44	0,70	0,70	0,78	0,60	1,21	0,70	1,01	0,70	1,01	1,21
Gebläse-Drehmoment bei Drehzahl des max. Drehmoment	M _{GM} =P _{GM} /N _M *7022	Nm	0,57	0,57	0,90	1,03	1,40	1,40	1,48	0,90	1,70	1,40	1,50	1,40	1,50	1,70
Rechenergebnis																
Leistung mit Gebläse	P=P ₀ -P _{GL}	PS	16,0	19,8	19,8	25,0	27,0	30,0	34,0	42,0	49,0	33,9	42,8	37,5	47,3	59,6
																4

In der Excel-Tabelle kannst Du mit den Werten spielen und die Daten Deines Puch-Autos eingeben, um herauszufinden, wie viele PS Du ungefähr hast

6.1. Erläuterungen

Liefergrad:

Diesen habe ich für alle "Serienautos" aus den vom Werk vorgegebenen Daten berechnet.

Für die Hubraumvergrößerten Motoren habe ich die Werte abgeschätzt.

Bei maximaler Leistung (hohe Drehzahl) ist der Liefergrad immer 10-20% kleiner als bei maximalem Drehmoment. Ansaugtrakt, Ventile und Auspuff schränken die Atmung ein und die Zylinderfüllung reduziert sich.

Besonderheiten:

- 1. Beim 500D und 650T erkennt man den "Drosselmotor".
 - Sie haben sehr kleine Lufttrichter im Vergaser und begrenzen so den Luftdurchlass bei höherer Drehzahl. Der Liefergrad bei Maximalleistung beträgt nur 0,69 bzw. 0,64.
 - Bei den baugleichen Motoren des 500DL/500S und beim 700C/Haflinger wurde die Leistungssteigerung nur durch "ungedrosselte Luftzufuhr" erreicht.
- 2. Beim Werks-Tuning (Gruppe 2-Motor) wird erstmals ein "Positives Spülgefälle" beim max. Drehmoment mit einem Wert von 1,06 erreicht. Siehe Erläuterung Kapitel 3.3. Ein noch höherer Wert ist beim Puch-Motor kaum möglich.
- 3. Der Liefergrad steht in direktem Zusammenhang mit dem Motordrehmoment.

 Beim maximalen Drehmoment ist er demnach am höchsten. Hier atmet der Motor optimal und Gasschwingungseffekte im Saugrohr und Auspuff können bestmöglich genutzt werden.

Werks-Tuning Gruppe 2

Dieser Motor ist in der Schrift "PUCH 650TR Rallye, Europameister 1966 KI.II Tourenwagen" genau beschrieben. Alle oben beschriebenen Tuningmaßnahmen wurden hier angewendet.

Rennmotor Müller

Angabe von Josef Müller auf seiner Homepage:

"Unsere Schmiedekolben für 90 mm und 90,5 mm Bohrung sind gleich schwer wie die originalen TR Kolben. Mit 823cm³ und den 3/1er Pleuel sind so standfeste Motoren mit mehr als 60 PS möglich.

7. Resümee: wie viele PS hat also mein Puch?

7.1. Die Berechnung

1. Die Werksangaben für alle Puch-Motoren lassen sich sehr gut nachvollziehen

7.2. Was ist mit einem Puch-Motor realistisch möglich

- 1. Basis 650 TR2-Motor (Hubraum max. 680 cm³):
 - Mit viel Detailarbeit sind die serienmäßigen 40 PS auf 50 PS zu steigern. Rennmotore mit extrem scharfen Nockenwellen bekommt man auf 55 PS, aber nicht mehr straßentauglich. Mehr geht nicht.
- 2. Hubraumvergrößerte Motore mit Bohrung 86 (VW-Kolben) oder Bohrung 90:
 - Das führt vor allem zu einem besseren Drehmoment.
 - Die Maximalleistung lässt sich aber nur geringfügig steigern, denn man bekommt das Gemisch wegen der für den Hubraum recht kleinen Ventile nicht in den Brennraum. Also ist dieser Motor auch mit 50 bis max. 55 PS begrenzt.
- 3. Die **60 PS des Müller-Motors** sind erreichbar, da muss man aber sehr viel Arbeit in das Finetuning des Motors stecken, u. A. braucht es größere Ventile, einen größeren Vergaser und eine scharfe Nockenwelle. Damit ist die Grenze der Mechanik und der Kühlung erreicht. Geht man mit der Leistung höher, reißen die Stehbolzen aus, Pleuel reißen, Zylinderköpfe deformieren sich wegen Überhitzung usw.
- 4. Puch-Motore mit Turbolader oder Kompressor:
 - Die Grenze der Mechanik und der Kühlung bleibt, damit sind höhere Ladedrücke tabu.
- 5. Die Märchenerzähler:

Wenn also jemand meint, sein Puch hätte 60, 70, 80 oder mehr PS, dann sollte man nicht darüber diskutieren, wie er das hingekriegt hat. Die einzig richtige Antwort: Das freut mich für Dich! Oder träum weiter!